
Bernoulli’s Scholium
In the scholium section of Bernoulli’s proof he gives a correct argument
that   (Bernoulli’s M/L) and  (Bernoulli’s M/) can be madeW
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Notice that the numerators are getting smaller and the denominators are
getting larger as we go from left to right and that the rightmost fraction 
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In Bernoulli’s example R=30, S=20, C =1000 . So since T=R+S, T=50.
C(S-1) = 19,000 and K = 301, since 301 > 19,00030 1
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So by the same reasoning as above we get
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Solving for N in the equation   =  we getNRS NR K R
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N =  So in Bernoulli’s example, K is 211 since    K T R
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211 > 29,000. So N = (211(50+1)-30)/(20+1) = 511.20 1
20
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So   NT = 511x50 = 25,550.   Since 25,550 > 24,750   if
NT = 25,550 we’re guaranteed that it will be at least 1000 times more
likely that the relative frequency of successes lies in the range 3/5-1/50
through 3/5 + 1/50 than outside that range.
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Comment
 In my paper Bernoulli’s Theorem Part One Lemma 8 it is shown that if  
 M/L >= C(S-1) then the ratio of the sum of the number of ways of
getting from NR + 1 successes to NR + N successes to the sum of the
number of ways of getting more than NR + N successes will be greater
than C.  Similarly, in Part Two it is shown that if M/ >= C(R-1) then
the ratio of the sum of the number of ways of getting NR - 1 through
NR - N successes to the sum of the number of ways of getting less than
NR - N successes will be greater than C.
So if N is such that M/L >= C(S-1) and M/ >= C(R-1), it is guaranteed
that it will be at least C times more likely that the relative frequency of
successes in NT trials will be in the range R/T - 1/T through R/T + 1/T
than outside that range.
The reason  Bernoulli uses for the equation  =R
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is because he knew that this equation would have a solution for N.
Dividing the numerator and denominator on the left side of the equation
by N gives   The negative term in the numerator  RS S K S N
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(K-1)S/N will approach zero as N increases and the positive term in the 
denominator KR/N will also approach zero, so Bernoulli knew the
fraction would be increasing as N increases and would approach
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solution for N.
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